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CONVERSION TABLE 

Conversion factors for U.S. customary to metric (SI) units of measurement 

To Convert From To Multiply 

angstrom meters (m) 1.000 000 XE-10 

atmosphere (normal) 

bar 

kilo pascal (kPa) 

kilo pascal (kPa) 

1.013 25 XE+2 

1.000 000 XE+2 

barn meter2 (m2) 1.000 000 XE-28 

British Thermal unit (thermochemical) Joule (J) 1.054 350 XE+3 

calorie (thermochemical) 

cal (thermochemical)/cm2 

curie 

Joule (J) 

mega Joule/m2(MJ/m2) 

giga becquerel (GBq)* 

4.184 000 

4.184 000 XE-2 

3.700 000 XE+1 

degree (angle) radian (rad) 1.745 329 XE-2 

degree Fahrenheit degree kelvln (K) tK=(t°f+459.67)/1.8 

electron volt joule (J) 1.602 19XE-19 

erg 
erg/second 

foot 

Joule (J) 

watt (W) 

meter (m) 

1.000 000 XE-7 

1.000 000 XE-7 

3.048 000 X E-l 

foot-pound-force 

gallon (U.S. liquid) 

inch 

Joule (J) 

meter3 (m3) 

meter (m) 

1.355 818 

3.785 412 XE-3 

2.540 000 X E-2 

Jerk Joule (J) 1.000 000 XE+9 

joule/kilogram (J/Kg) (radiation dose 
absorbed) Gray (Gy) 1.000 000 

kllotons terajoules 4.183 

kip (1000 Ibf) 

kip/Inch2 (ksi) 

ktap 

newton (N) 

kilo pascal (kPa) 

newton-second/m2 (N-s/m2) 

4.448 222 X E+3 

6.894 757 X E+3 

1.000 000 XE+2 

micron meter (m) 1.000 000 XE-6 

mil meter (m) 2.540 000 X E-5 

mile (international) 

ounce 

meter (m) 

kilogram (kg) 

1.609 344 XE+3 

2.834 952 X E-2 

pound-force (Ibf avoirdupois) 

pound-force inch 

pound-force / inch 

pound-force / foot2 

pound-force/inch2 (psi) 

pound-mass (lbm avoirdupois) 

pound-mass-foot2 (moment of inertia) 

pound-mass / foot3 

newton (N) 

newton-meter (N-m) 

newton/meter (N/m) 

kilo pascal (kPa) 

kilo pascal (kPa) 

kilogram (kg) 

kilogram-meter2 (kg-m2) 

kilogram/meter3 (kg/m3) 

4.448 222 

1.129 848 X E-l 

1.751 268 XE+2 

4.788 026 X E-2 

6.894 757 

4.535 924 X E-l 

4.214 011 XE-2 

1.601 846 XE+1 

rad (radiation dose absorbed) 

roentgen 

shake 

Gray (Gy)" 

coulomb/kilogram (C/kg) 

second (s) 

1.000 000 XE-2 

2.579 760 X E-4 

1.000 000 XE-8 

slug kilogram (kg) 1.459 390 XE+1 

torr (mm Hg. 0°C) kilo pascal (kPa) 1.333 22 X E-l 

•The becquerel (Bq) is the SI unit of radioactivity; Bp = 1 event/s. 

"The Gray (Gy) Is the SI unit of absorbed radiation. 
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SECTION 1 

INTRODUCTION 

1.1  BACKGROUND AND OBJECTIVE. 

This technical report describes computational modeling of underground 

tunnel response in support of the Underground Technology Program (UTP) which 

is a multi-year investigation into the vulnerability of underground structures. The 

overall program includes computational modeling, material modeling, laboratory 

testing, and field testing to improve the ability to predict the response and failure 

of underground structures subjected to ground shock due to near-surface 

explosions. The emphasis is on deeply buried tunnels with little or no 

reinforcement. 

1.2 SCOPE AND SUMMARY. 

The computational modeling effort involved three major areas of 

investigation: 1) benchmark activity, 2) parametric study and 3) laboratory test 

simulation. The benchmark activity was a step-by-step series of idealized 

problems which addressed various aspects of tunnel response in jointed rock 

masses. The parametric study considered the systematic sensitivity of loading 

environment, material characterization and geometric conditions as well as 

computational approaches on tunnel response. Numerical simulation of the SRI 

International lab-scale HE experiments on tunnel response in intact limestone 

was conducted to correlate calculational approaches with data. 

As one of several participants in the computational modeling effort, it is 

clear that a step-by-step procedure of material model verification, free-field 

loading environment definition and parametric response calculations need to be 

performed in order to reduce uncertainties and improve the ability to predict the 

response and failure of underground structures subjected to ground shock due to 

near-surface explosions. 



SECTION 2 

BENCHMARK ACTIVITY 

Various numerical approaches to problems of tunnel dynamics are 
compared with each other and, wherever possible, with exact analytic solutions 
by Logicon RDA [Simons, 1992]. The medium is an idealization of a jointed rock 
mass. The intact rock is linear elastic-plastic with a pressure dependent failure 
surface and associated plastic flow law. There are two orthogonal sets of equally 
spaced joints. Each joint is nonlinear elastic in the normal direction and linear 

elastic with Coulomb friction in shear. 

The TRT approach utilizes the EXCALIBUR finite element method [Ito, 
England & Nelson, 1981] to represent the intact rock and joints with two different 
types of models for jointed rock, an explicit one where the joints are treated 
separately (in the near field of the tunnel), and an implicit one where their 
properties are lumped together with those of the intact rock (in the far field). The 
TRT implicit joint model admits arbitrary constitutive behavior in both the intact 
rock and joint, and by enforcing internal compatibility and stress equilibrium 
derives a super-element representing the combined deformation due to both 

joints and intact rock. 

2.1  PROBLEMS WITH ANALYTICAL SOLUTIONS. 

The first five problems are quasi-static driven by boundary displacements 
which are consistent with homogeneous (uniform) strain throughout the region of 
interest. This does not mean that the actual strains will be uniform; if there are 
joints then the actual strains will not be uniform. But in fact the stresses and 
strains in the intact rock and joint material will separately be homogeneous at 
each point of the imposed strain path. This opens the possibility of direct 
analytical solution of these problems for comparison with numerical results. 

Another way of viewing the situation is that each of these problems 
reduces to nothing more than finding the response of a single implicit element 
around a specified strain path.   This is strictly a material response question; 



equations of motion or compatibilty among elements play no role whatsoever. It 
is interesting to note that TRT was the only participant to produce single-element 

solutions to all of the first five problems. 

2.2 TWO-DIMENSIONAL PROBLEMS. 

Simplicity makes analytic solutions possible. In contrast the two- 
dimensional problems have fields which vary both spatially and temporally so 
that analytic solutions are not generally feasible. The free-field problem concerns 
deformations of a wedge-shaped section of an annulus in plane strain, as shown 
in Figure 2-1, with the entire region containing vertically and horizontally jointed 
rock. The top edge (inner arc) is loaded with the pressure pulse shown in the 
figure, while shear tractions are zero. The left and right sides have roller 
boundaries, making the left side a plane of symmetry (the right side is not, 
because the effective anisotropy due to jointing makes the material unsymmetric 
about that plane). The lower edge (the outer arc) is a transmitting boundary. 

Most of the region is to be modeled implicitly, except for a rectangular 
region extending 2.5 tunnel diameters (12.5 m) in all directions from the on-axis 
point at R = 500 m. This region is modeled explicitly, in anticipation of the tunnel 
situated there in the final problem. The free-field problem is essential to clearly 
define the loading environment at the tunnel range. The geometry and loading in 
the final problem are shown in Figure 2-2, which are precisely the same as the 
free.fjeid problem but now there is a lined tunnel in the center of the rock island. 

Based on a combination of physical understanding of wave propagation 
and material behavior and comparison with the analytic solutions, three of the 
numerical approaches, including TRT, are judged [Simons, 1992] to have 
produced credible results to the final problem of a lined tunnel in jointed rock 
mass engulfed by a cylindrically divergent stress wave. 
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SECTION 3 

PARAMETRIC STUDY 

The parameter study provides a systematic investigation of the sensitivity 

of tunnel response to a variety of factors: 

- Geometric Considerations 

- range from source 

- diameter 

- divergence 

-Loading Environment 
- peak incident stress 

- pulse duration 

- Material Characterization 

- dilatancy 
- extension/compression strength ratio 

- flow rule 

- Numerical Scheme 

-code 

g 
The scope of the study (initially) involves nine independent parameters or 2 = 

512 two-dimensional calculations using a wedge-shaped computational model 

and linear elastic-plastic material model similar to that in the benchmark activity 

but without joints. The participants are Weidlinger Associates (WA) and TRT. 

The calculations data from the parameter study is analyzed by Logicon RDA 

[Pucik & Curry, 1993] using design-of-experiments methodologies [Box, Hunter & 

Hunter, 1978]. 



3.1  PROBLEM DEFINITION. 

The initial problem definition for geometry, material properties, loading and 

calculation matrix are given in Tables 3-1 to 3-4, respectively. 

3.2 CONCLUSIONS. 

The key conclusions from this parameter study are as follows: 

- Tunnel Failure Sensitive to Three Main Parameters 
- peak incident stress 
- extension/compression strength ratio 

- flow rule 

- Crush Strength Not A Very Sensitive Parameter 

- Numerical Approach (Calculator) An Important Parameter 

- Geometric Scaling Applies 
- range and diameter combined into single parameter 
- if and only if numerical grid scaled geometrically 



Table 3-1. Geometry. 

Property Symbol Value(s) 

Ranqe of tunnel from source R 250 m 500 m 

Tunnel diameter D 5 m 10m 

Liner thickness h D/100 

Table 3-2. Material Properties. 

Property Symbol Value(s) 

Rock mass density P 2500 kg/m3 

Rock Younq's modulus E 30GPa 

Rock Poisson's ratio V 0.25 

Rock cohesion c0 4.5 MPa 

Rock friction angle <t> 25° 

Rock dilation angle V 25° 0° 

Rock extension/compression strength Ge /Oc 
0.5 1 

Rock tensile strength T0 
2 MPa 

Rock critical pressure Pc 66.7 MPa 133.3 MPa 

Rock uniaxial tangent modulus wt 24GPa 

Rock cap aspect ratio 
p 
"cap 2.5:1 

Liner Young's modulus EL 200 GPa 

Liner Possion's ratio vL 
0.30 

Liner yield strength O y 400 MPa 

Liner mass density PL 7500 kg/m3 I 



Table 3-3. Loading. 

Parameter Symbol Value(s) 

Peak incident stress G„ 100 Mpa 200 Mpa 
Positive phase duration of 
velocity relative to DUG-1C 

W*+DUG 1 0.5 

Wavefront divergence R/Rnf 0 1             I 

Table 3-4. Calculation Matrix. 

Run 

R 

(m) (MPa) 
¥ 

(deg) 
C'VOUG D 

(m) 
o\A Pc 

(MPa) 

1 500 200 25 1 10 1 133.3 

2 500 200 25 0.5 5 0.5 133.3 

3 500 200 0 1 5 0.5 66.7 

4 500 200 0 0.5 10 1 66.7 

5 500 100 25 1 10 0.5 66.7 

6 500 100 25 0.5 5 1 66.7 

7 500 100 0 1 5 1 133.3 

8 500 100 0 0.5 10 0.5 133.3 

9 250 200 25 1 5 1 66.7 

10 250 200 25 0.5 10 0.5 66.7 

11 250 200 0 1 10 0.5 133.3 

12 250 200 0 0.5 5 1 133.3 

13 250 100 25 1 5 0.5 133.3 

14 250 100 25 0.5 10 1 133.3 

15 250 100 0 1 10 1 66.7 

16 250 100 0 0.5 5 0.5 66.7 

8 



SECTION 4 

LABORATORY TEST SIMULATIONS 

SRI International performed both static tunnel tests [Simons et al, 1993] 
and spherical wave tunnel (SWAT) tests [Klopp et al, 1993] in limestone blocks to 
compare the measured loading environment and tunnel closures with those from 
various computational models. The TRT approach utilizes relatively fine zoning 
to capture the free-field environment with ten circumferential elements across the 
tunnel radius and radial elements one-fifth of the radius near the tunnel, while the 
liner is a simple membrane. Both two-invariant and three-invariant failure models 
are developed for the limestone based on the RE/SPEC material properties 
[Fossum, 1993]. All numerical simulations were performed 'pre-tesf before the 
measured data were made available. In addition, preliminary calculations were 
conducted to verify the computational approach and material modeling. 

4.1  STATIC TUNNEL TESTS. 

Three static tunnel tests in limestone are simulated, called ST1, ST2, and 
ST3. The limestone specimens are cylinders 30.5 cm (12 in.) in diameter with a 
tunnel located at the specimen midheight. The height of the specimen for ST1 is 
30.5 cm (12 in.) and the tunnel is unlined and has a diameter of 19.1 mm (0.750 
in.). For ST2 and ST3 the specimen height is 45.8 cm (18 in.) and the tunnels 
are lined (fully annealed 3003 aluminum tube with 70 MPa strength). The 
specimens are loaded by two independent hydraulic pressures, a vertical load 
applied to the top and bottom surfaces of the cylinder and a confining load 
around the outer surface of the cylinder. For ST1 and ST3 the loading history is 
a single cycle of loading (191 MPa and 139 MPa, respectively) and unloading. 
For ST2 the specimen is loaded to 125 MPa, unloaded, reloaded to 156 MPa, 
and then unloaded. 

The closure comparisons of the numerical simulations of ST1 using two- 
invariant (M-S) and three-invariant (W-W) strength models based on RE/SPEC- 
93 properties show little difference at the crown-invert (Figure 4-1) but a factor of 
three increase at the springline (Figure 4-2) due to strength reduction (70%) in 
TXE , which is more consistent with the measured closure data.   Numerical 



simulations of ST2 produce similar results as ST1 since the confining conditions 
are essentially uniaxial strain with no shear failure in the far-field at the loading 
boundary. In contract, both the numerical simulations and laboratory 
experiments of ST3 are very sensitive and produce a wide variation in tunnnel 
closure due to the divergent loading which can induce shear failure in the whole 

specimen. 

4.2 SPHERICAL WAVE TUNNEL TESTS. 

The spherical wave tunnel (SWAT) tests involve a charge of PETN 
detonated in a block of limestone containing tunnels. The numerical simulations 
involve the two initial/boundary value problems given in Figure 4-3. The 
problems are identical except for the location of the tunnel, either 14.5 cm or 19.5 
cm from the center of the charge. The measured particle velocity history shown 
in the figure is applied to the inside of the 7.50-cm radius cavity. 

A rate-enhanced three-invariant (W-W) failure with symmetric crush (Cap) 

model consistent with RE/SPEC and ARA static (10'5/s) data, ARA extrapolated 
dynamic (10+2 - 10+3/s) strength data and LLNL shock hugoniot (lO^/s) crush 
data is developed for numerical simulation of SWAT. Assuming log-linear 
interpolation with no SWAT free-field data, this uncalibrated rate-enhanced 
model gives about a factor of two increase in crush strength (initial cap location) 
and 33% increase in shear strength. 

The rate-enhanced model is also calibrated using log-bilinear interpolation 
to match SWAT (10+2/s - 10+3/s) free-field environment at both the particle 
velocity stations (Figure 4-4) as well as the stress at the range of the tunnels 
(Figure 4-5). The comparison of the calibrated rate-enhanced response to the 
measured data at the 14.5-cm tunnel is 8% versus 7% crown-invert closure 
(Figure 4-6) and 4% versus 2% springline closure (Figure 4-7). This is a very 
good comparison given the uncertainty in strain-rate effects on shear strength 
including extension/compression strength ratio. It should be noted that while the 
rate independent model appears to give better correlation with measured 
springline closure (Figure 4-7), this is very misleading since this model does not 
reproduce the measured free-field loading environment (Figures 4-4 and 4-5). 

10 
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Gage z 
(cm) 

PV2 8.33 

PV3 10.00 

PV4 11.67 

PV5 13.33 

PV6 15.00 

PV7 16.67 

PV8 18.33 

PV9 20.00 

PV10 21.67 

PV11 23.33 

Figure 4-3. SWAT Initial/boundary value problem. 
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SECTION 5 

RECOMMENDATIONS 

As one of several participants in the computational modeling effort, 
it is clear that a step-by-step procedure of material model verification, free-field 
loading environment definition and parametric response calculations need to be 
performed to reduce uncertainties and improve the ability to predict the response 
and failure of underground structures subjected to ground shock due to near- 
surface explosions. A major uncertainty is strain-rate effects on shear strength 
including extension/compression strength ratio of rocks of interest. 
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